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Summary. An algorithm for Utilising abelian point group symmetry in direct 
MP2 energy calculations is presented. This is based upon the direct MP2 method 
of Head-Gordon, Pople and Frisch. The method uses the petite atomic orbital 
integral list as in conventional transformations coupled with a symmetry adap- 
tion of the three quarter transformed integrals. Representative calculations for 
ethylene and benzene are presented which demonstrate the potential of the 
method. 
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1 Introduction 

Large-scale Self-Consistent Field (SCF) calculations can today be carried out 
routinely and cheaply thanks to the development of 'Direct methods' as pio- 
neered by Alml6f and co-workers [1, 2]. As a result SCF calculations with up to 
1000 basis functions have now appeared in the literature [3]. In essence a 'Direct' 
code simply recomputes the two-electron repulsion integrals (ERIs) when 
needed, thereby avoiding quartic disk requirements. Despite the greater compu- 
tational cost associated with these algorithms, Direct methods have become 
highly efficient and competitive due to improvements in integral evaluation [4, 5] 
and the rapid developments in CPU technology. 

As is well understood the SCF method does not describe electron correlation 
and post Hartree-Fock treatments are generally required for the accurate 
description of many chemical problems. For those systems where the SCF 
method affords a reasonable description of the ground electronic state, the MP2 
method (Moller-Plesset Theory [6] to Second-Order) has been found to be 
extremely reliable in recovering the bulk of the correlation. Because MP2 
calculations are size consistent and scale as N 5, where N is the number of basis 
functions, this method has historically been the most attractive approach for a 
correlated description of large chemical systems. Consequently there has been 
much work in extending the Direct approach to the evaluation of MP2 energies 
[7, 8] and gradients [9, 10]. Efficient evaluation of the MP2 energy needs a 
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restricted four index transformation to give the Molecular Orbital (MO) inte- 
grals (ia [jb), where i and j are occupied, and a and b virtual orbitals. The 
expression for the MO integrals is: 

(ia Ijb) = Z Csb Z Crj ~ Cqa ~, Cpi(pq l rs) (1) 
s r q p 

where (pq ] rs) are the Atomic Orbital (AO) ERIs and C represent the appropri- 
ate molecular orbitals. The cost of each summation in Eq. (1) working from the 
inner sum outwards is O N  4, O V N  3, O Z V N  2 and 02V2N [11], where N denotes 
the number of basis functions, V the number of virtual orbitals and O the 
number of occupied orbitals. Unlike conventional disk-based codes, a Direct 
MP2 algorithm establishes the MP2 energy without storing the AO ERIs and 
without using external storage for the partly transformed integrals. Another 
approach has been termed Semi-Direct, where external storage is used to store 
partly transformed integrals. The choice between these two approaches is dic- 
tated by the balance between core and disk space. In this paper we shall be 
concentrating on extending the Direct MP2 method to larger systems. 

The direct algorithm suggested by Head-Gordon, Pople and Frisch [7] is 
depicted in Fig. 1 and will be referred to as Algorithm A. In this method the four 

Loop over i molecular orbitals 
Loop over R, S shells 
Loop over P, Q sections 
Loop over pqrs ~ PQRS 

Form integrals (pq ]rs) for p ~> q, r ~> s 
End pqrs 
Loop over rs 
Loop over pq 

1 (iq Jr s) = (iq [rs) + Cpi(p q Irs) 
(ip I rs) = (ip Its) + Cqi(p q I rs) 

End pqrs 
End PQ 
Loop over rs 
Loop over a, q 

2 ( ia lrs)=( ia]rs)+Cq, , ( iq lrs)  
End a, q 
Loop over a, j ( j  ~< i) 

3 (ia IJs) = (ia IJs) + Crj(ia I rs) 
(ia l jr) = (ia [jr) + C,j(ia Ira) 

End a, j 
End rs 
End RS 
Loop over j 
Loop over a, b, s 

4 (ia ]jb) = (ia ]jb) + Csb(ia [is) 
End a, b, s 
Loop over a, b 
Find contribution from i , j  to MP2 energy 
End a, b 
End j 

End i 

Fig. 1. Structure of algorithm A 
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index transformation is related to the one used in the GAUSSIAN series of 
programs as described by Hehre et al. [12], but differs in that the loop over the 
RS shells is not closed after the first quarter transformation (step 1), thereby 
avoiding (9(N 3) storage for the (iq ]rs) integrals. Instead the RS loop is closed 
only after the transformation of the three-quarter transformed integrals, (ia I js), 
at step 3. As a consequence the (pqlrs )= (rslpq) permutational symmetry 
cannot be exploited and the AO integrals are effectively done twice. However the 
reduction in memory makes this worthwhile especially in the context of the 
Direct SCF, where the integrals are recalculated anyway. The main storage 
requirement of the scheme is the array that holds the three quarter transformed 
integrals at step 3 which requires a maximum of O VN storage. In fact, the outer 
loop is done over batches of 'i' molecular orbitals, the size of each batch 
determined by how much memory is available. This feature is not shown in the 
figure so as to give greater clarity. In effect then, the method involves recalculat- 
ing the integrals 21 times where I is the number of batches of i molecular orbitals. 
The method is therefore still only N 5 in cost although in the limit as I--* O the 
integral re-evaluation will dominate the time taken, since many more operations 
are involved in this step. 

We have used Direct MP2 algorithms of this type to perform large basis set 
MP2 calculations on acetylene trimer [13] and benzene [14]. With the computing 
resources available to us these calculations would not have been possible using 
conventional methods. As the size of the system and number of basis functions 
increase there will come a point where even this algorithm is no longer applicable 
and the O VN storage is prohibitive. In this work we present a Direct MP2 energy 
algorithm based on Algorithm A which significantly reduces the memory require- 
ment for molecules with point group symmetry, thereby extending the Direct 
MP2 method to the study of larger systems. Within a fixed core allocation this 
method will reduce the number of batches (and therefore integral re-evaluations) 
required, saving on CPU time. 

2 Use of symmetry 

The number of batches is primarily controlled by the amount of memory taken 
up by the array holding the (ia [js) integrals and the storage used is O VN times 
the number of batches. Symmetry can be used to reduce the storage of this array 
as well as to decrease the amount of time spent in every stage of the calculation. 

In many ab initio codes, point group symmetry is used to reduce the 
computational task by the method of Dupuis and King [ 15]. In this method only 
the 'petite' set of symmetry unique integrals are formed and these are multiplied 
by the number of integrals they are related to by symmetry. The four index 
transformation can then be performed in the usual way, Pitzer's theorem [16] 
ensuring that the symmetric integrals have the correct value. This method 
ensures that less work is done for those molecules where the atoms are trans- 
formed into other atoms by the group operations. In CADPAC [ 18] the above 
procedure is standard for symmetries of D2h and its subgroups. The analogous 
method for non-abelian point groups is more involved but has now been 
successfully implemented by H/iser and co-workers [19]. 

In a Direct approach to the evaluation of the MP2 energy, such as algorithm 
A, the above scheme ensures that less work is required in the evaluation of the 
AO ERIs. However symmetry can also be used to reduce the storage problems 
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associated with the (ia [js) integrals formed in step 3. One such approach would 
be to perform a transformation of the AO ERIs  to symmetry orbital integrals 
[20, 21] Prior to the four index transformations. The transformed and partly 
transformed integral lists would then only include integrals non-zero by symme- 
try, thereby reducing the memory requirement at every stage. However this 
approach would be expensive (note that a symmetry transformation would also 
inhibit the sparsity of  the integral list and the effectiveness of  integral prescreen- 
ing) and would require substantial re-coding. A more practical alternative, is a 
mixture of  the two approaches that keeps the desirable properties of  the petite 
integral list but saves on store at the crucial stage of  the transformation [22]. 
Simply put, the first two stages of  the transformation are obtained from the 
petite set a of  AO ERIs as in Algorithm A, but at the critical third stage of the 
transformation the final basis function is simultaneously symmetry adapted to 
give (ia [js'). Of course, the use of  only the petite set of  integrals is still valid for 
this mixed integral since the symmetry orbitals and the molecular orbitals share 
the same symmetry properties. In the next section we present some calculations 
which demonstrate the significant savings in memory  and CPU time that are 
achieved with this new method. 

3 Demonstrative calculations and discussion 

As an illustration of our method a series of  calculations was performed on 
ethylene and benzene utilising specific point groups. Table 1 presents the timings 
and relative timings for the six ethylene calculations performed. A (8s6p3d/6s3p) 
basis set was used (giving a total of  148 basis functions) and all MOs were active. 
Similar calculations for benzene were performed and the results are given in 
Table 2. In this set of  calculations a (5s4p2d/3s2p) basis was used (giving a total 
of  228 basis functions) and the six carbon ls MOs were frozen. For  the 
calculations on both molecules the memory was restricted so that the D2h 

Table 1. Performance of MP2 symmetry energy algorithm for C2H 4 calculated at different point 
group symmetries 

Point group Order Number of Number of AO Timea/s Relative 
of group unique atoms integral evaluations timings 

D2h 8 2 1 520 1 
C2~ 4 2 2 913 1.8 
C2, 4 4 2 1661 3.2 
C s 2 3 3 1970 3.8 
C z 2 4 3 2385 4.6 
C l l 6 6 6447 12.4 

a Calculations performed on a Convex C220 machine 

a In fact for our purposes, since the permutational symmetry (pq [ rs) = (rs [ pq) is not being taken 
into account, the normal implementation must be amended slightly but this does not represent a 
problem. 
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Table 2. Performance of MP2 
group symmetries 
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symmetry energy algorithm for benzene calculated at different point 

Point group Order Number of Number of AO Timea/s Relative 
of group unique atoms integral evaluations timings 

D2h 8 4 1 1043 1 
C2~ 4 6 2 2697 2.6 
C2~ 4 8 2 2862 2.7 
Cs 2 6 3 3689 3.5 
C, 2 8 3 3977 3.8 
C s 2 12 3 . 7449 7.1 
C 1 1 12 6 12945 12.4 

a Calculations performed on a Convex C340 machine 

calculation could be performed in one batch and the lower symmetry calcula- 
tions required more batches. For  benzene this meant that 2.5 M W  of  memory 
were allocated to the program. This calculation would have been difficult with 
usual computing resources and conventional MP2 codes, and is a better indica- 
tion of how our algorithm extends the applicability of  the Direct MP2 method 
to larger systems. 

The first point to note from the tables is that using symmetry as described 
above, we can obtain an order of  magnitude saving in the MP2 calculation. The 
savings achieved, as indicated by the relative timings, are significant. We can 
come to some understanding of  these savings by considering how symmetry 
reduces the cost of  the calculations. An obvious reduction occurs from only 
calculating the petite list of  AO integrals during the transformation. This gives a 
saving dictated by the order of  the group (g) and the number of  symmetry 
unique atoms since, in the Dupuis and King formulation, the grande list of  
integrals is at most g times larger than the petite list. In practice the actual saving 
is less because the method only takes advantage of group operations that move 
atoms onto other atoms, and therefore offers no saving for molecules where the 
n u m b e r  of  symmetry unique atoms equals the total number of  atoms. Further- 
more the routines that calculate symmetry unique integrals are slower than those 
that evaluate all integrals since the symmetry tests are difficult to vectorise. As an 
example, the SCF part  of  the D2h calculation on benzene was only 3.3 times 
faster than the C1 calculation. 

Another saving is achieved during the transformation part  of  the algorithm. 
At the first step of  the transformation (step 1) there is a reduction in the cost of  
up to the order of  the group because only the petite list of  atomic integrals are 
processed. In fact, since most  of  the saving in the petite list occurs in the loops 
over the RS shells, the saving in the 2nd and 3rd is of  about  the same order. The 
fourth step of  the transformation is only performed for totally symmetric 
integrals and therefore there is a possible saving in this part  of  about  g2. 
Consequently the overall saving in the transformation is at most  the order of  the 
group. 

Finally there is a further saving associated with the reduction in memory of 
the OVN array. At step 3 the symmetry transformation reduces the amount  of  
memory required for the (ia [js) integrals by an approximate factor of  g. As a 
result more occupied MOs (i) can be treated in any one batch leading to a 
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possible reduction in the total number of batches (and AO integral evaluations) 
by up to this factor. 

Summarising then, there is a possible saving of up to a factor of g2 associated 
with the repeated AO integral evaluations and a saving of up to a factor of g 
associated with the transformation. Depending on the balance of time between the 
recalculation of AO integrals and the transformation of those integrals, any saving 
up to a factor o fg  2 could be observed. This explains why we obtain relative speed 
ups that are larger than the order of the group in Tables 1 and 2. In fact for the 
D2h calculation on benzene the MP2 part of the calculation runs over 12 times 
faster. The calculations on ethylene indicate that similar savings can also be 
expected for other molecules. The results also suggest that the cost of large MP2 
calculations using this algorithm is dictated by the cost of the repeated calculation 
of the AO integrals. As a final point we note that for the benzene Cs calculation 
with 12 symmetry unique atoms, there is still a speed up of a factor of 1.7, even 
though the Dupuis and King symmetry formulation offers no advantage. In this 
case, the saving occurs only through the reduction in the number of batches. 

In conclusion, the method outlined here offers significant saving over the 
Direct MP2 approach when applied to symmetrical molecules. By reducing the 
amount of memory used by the large O VN array formed at step 3 of the 
algorithm, we have extended the applicability of the method to larger systems. 
An important final point is that this method is simply implemented in existing 
Direct MP2 codes. 
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